• 逻辑学概论(自主模式)

    自主模式 国家级精品 数学学科
    陈为蓬
    • 陈为蓬副教授 清华大学人文学院
    • $可随时加入
    • g14.6万人
    • 7课件全部开放

    简介“逻辑”一词很常用,但作为一门学科和课程,“逻辑学”涉及的内容范围,比“逻辑”一词日常的用法范围要小得多。它的研究对象是推理,更准确地说,是“有效推理形式”。什么样的是有效推理形式?怎样判定?怎样生成?逻辑学中要给出基本的方法。 作为面向非逻辑学专业学生的逻辑学概论课,本课程的着眼点不仅仅在于讲授逻辑学中的具体内容,而更致力于使学生了解逻辑学的基本思路、准则和方法。能否和如何运用于实践,则有待于我们的共同努力。 主要内容包括:中外逻辑发展简史,复合命题的推理,命题演算,性质命题的推理,关系命题的推理,谓词演算概要,归纳推理简介,非经典(非标准)逻辑初步等。

    章节第一讲 什么是逻辑学 第二讲 逻辑学的产生和发展 第三讲 命题联结词及其基本推理形式 第四讲 复合命题的推理: 有效推理形式的判定 第五讲 复合命题的推理: 命题联结词的充足集 第六讲 命题演算:公理系统 第七讲 命题演算:公理系统,自然演绎系统 第八讲 基本命题的构成 第九讲 传统逻辑中基本命题的推理 第十讲 基本命题的推理 第十一讲 非经典逻辑初步 第十二讲 余论 期末考试

  • 微积分B(1)(自主模式)

    自主模式 国家级精品 数学学科
    扈志明
    • 扈志明副教授 清华大学数学科学系
    • $可随时加入
    • g9.7万人
    • 7课件全部开放

    简介微积分学既是近代数学发展的基石,也是现代自然科学、社会科学、管理科学的重要基础。微积分是大学各专业的重要公共基础课,是学习后续课程的必要条件。微积分(B)主要面向清华大学理工科专业的学生,每学期授课学生超过1100人。微积分B(1)课程的主要内容包括:实数与函数、极限理论、一元函数微分学、一元函数积分学。极限理论部分对闭区间列紧性和实数完备性的介绍值得期待。微分学部分介绍了连续、导数、微分、导数应用等基本内容。积分学部分介绍了不定积分和定积分的内容,重点强调了定积分的思想和基本积分法。

    章节序言 第一章 实数与函数 第二章 极限论 第三章 连续函数 第一次单元测验 第四章 导数与微分 第二次单元测验 第五章 导数应用 第三次单元测验 第六章 原函数与不定积分 第七章 定积分 第四次单元检测 第八章 级数 第五次单元检测 期末

  • 线性代数(1)(自主模式)

    自主模式 国家级精品 数学学科
    马辉
    • 马辉教授 清华大学数学科学系
    • $可随时加入
    • g8.6万人
    • 7课件全部开放

    简介线性代数是现代数学的基础之一,在物理、计算机图形学、工程、经济学等自然科学和社会科学各领域具有广泛和深刻的应用,同时线性代数是高等学校理工科各专业的一门重要基础课。本课程做为清华大学非数学理工科各专业学生重要的必修课程,介绍求解线性方程组、矩阵理论、向量空间和线性变换等线性代数的基本概念和基本理论,强调线性代数的理论与应用的结合。线性代数(1)围绕求解线性方程组,介绍高斯消元法、矩阵的性质运算和分解、向量空间、正交投影与最小二乘法、行列式的性质与计算、特征值特征向量与矩阵对角化、实对称矩阵的性质等基本知识点及其应用。通过本课程的学习,培养学生的数学逻辑思维和抽象思维能力,使学生具备线性代数的基本理论知识,熟练掌握求解线性方程组和矩阵运算、矩阵分解的基本方法,掌握英文数学术语和表达规范,为后继的学习和提高奠定数学基础。

    章节总引言 第一讲 向量及其运算 第二讲 矩阵与线性方程组 第三讲 高斯消元法 第四讲 矩阵的运算 第五讲 矩阵的逆 第六讲 LU分解 第七讲 向量空间 第八讲 求解齐次线性方程组 第九讲 求解非齐次线性方程组 第十讲 线性无关、基与维数 第十一讲 四个基本子空间的基和维数 第十二讲 四个基本子空间的正交关系 第十三讲 正交投影 第十四讲 最小二乘法 第十五讲 Gram-Schmidt正交化 第十六讲 行列式的基本性质 第十七讲 行列式的计算 第十八讲 Cramer法则及行列式的几何意义 第十九讲 特征值与特征向量 第二十讲 矩阵的对角化 第二十一讲 特征值在微分方程中的应用 第二十二讲 实对称矩阵 结束语

  • 微积分B(2)(自主模式)

    自主模式 国家级精品 数学学科
    扈志明
    • 扈志明副教授 清华大学数学科学系
    • $可随时加入
    • g6.8万人
    • 7课件全部开放

    简介微积分学既是近代数学发展的基石,也是现代自然科学、社会科学、管理科学的重要基础。微积分是大学各专业的重要公共基础课,是学习后续课程的必要条件。微积分(B)主要面向清华大学理工科专业的学生,每学期授课学生超过1100人。微积分B(2)课程的主要内容包括:多元函数微分学、多元函数微分学的应用、重积分及其简单应用、曲线积分与曲面积分、常微分方程。本门课程在制作过程中得到了Google公司的资助,特此鸣谢。

    章节第一章 多元函数微分学 第二章 多元函数微分学应用 第一次单元测验 第三章重积分 第四章 向量分析 第二次单元测验 第五章 常微分方程 期末

  • 线性代数(自主模式)

    自主模式 国家级精品 数学学科
    秦静
    • 秦静教授 山东大学数学学院
    • $可随时加入
    • g6.7万人
    • 7课件全部开放

    简介本课程主要讨论有限维线性空间的线性理论与方法,具有较强的逻辑性、抽象性与广泛的实用性,尤其在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值等已经成为技术人员经常遇到的课题。因此,本课程所介绍的方法广泛地应用于各个学科。通过本课程的学习,使学习者获得应用科学中常用的矩阵方法,线性方程组、二次型等理论及其有关的基础知识,并具有熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力,从而为学习后继课程及进一步扩大数学知识面、提高数学素养奠定必要的基础。为方便广大学习者,MOOC线性代数课程将更注重学习过程的引导和学习兴趣的培养,我们将传统意义的线性代数课程分成六个部分,共51讲。主要内容包括:行列式、矩阵、n维向量、线性方程组、相似对角形、二次型。内容以较小的颗粒形式呈现,力求更突出其精华,一次讲解1-2个知识点,使学习者更易于接受,更感兴趣;同时穿插思考题或测试题,引导学习者设疑提问,共同学习与解决问题。

    章节线性代数导论 课程介绍 行列式 矩阵 n维向量 线性方程组 相似对角形 二次型 期末考试

  • 组合数学(自主模式)

    自主模式 国家级精品 数学学科
    马昱春
    • 马昱春副教授 清华大学计算机系
    • $可随时加入
    • g6.2万人
    • 7课件全部开放

    简介 组合数学是计算机出现以后迅速发展起来的一门数学分支,主要研究离散对象的存在、计数以及构造等方面问题。由于计算机软件的促进和需求,组合数学已成为一门既广博又深奥的学科,其发展奠定了本世纪的计算机革命的基础,并且改变了传统数学中分析和代数占统治地位的局面。本课程从排列组合的基本概念出发,系统介绍了有关组合计数的理论和方法,主要内容包括计数的基本法则、母函数与递推关系、鸽巢原理和容斥原理、波利亚计数定理。这虽然是一门研究生课程,但是学习者只需要具备初等的数理知识就可以开始学习。我们将从基础的排列组合开始,逐步深入了解计数问题的不同解决思路,通过对现实生活中计数问题的演绎和学生们共同体会组合计数问题不断抽象深入的挖掘过程,引导学生共同感受数学知识的精妙,从而深入理解组合数学对计算机理论发展的推动作用。

    章节漫谈组合数学 小乒乓球的组合之旅 初识母函数 线性常系数递推关系 神奇的序列 容斥原理和鸽巢原理 群 Polya定理 组合之美 学期末调查问卷 期末测验

  • 线性代数(2)(自主模式)

    自主模式 国家级精品 数学学科
    马辉
    • 马辉教授 清华大学数学科学系
    • $可随时加入
    • g3.5万人
    • 7课件全部开放

    简介线性代数是现代数学的基础之一,在物理、计算机图形学、工程、经济学等自然科学和社会科学各领域具有广泛和深刻的应用,同时线性代数是高等学校理工科各专业的一门重要基础课。本课程做为清华大学非数学理工科各专业学生重要的必修课程,介绍求解线性方程组、矩阵理论、向量空间和线性变换等线性代数的基本概念和基本理论,强调线性代数的理论与应用的结合。作为线性代数(1)的后继课程,线性代数(2)继续结合应用介绍正定矩阵、相似矩阵(若当标准形)、奇异值分解、线性变换、广义逆、复矩阵以及线性代数在工程、几何、经济问题中的应用等。通过本课程的学习,培养学生的数学逻辑思维和抽象思维能力,使学生具备线性代数的基本理论知识,熟练掌握求解线性方程组和矩阵运算、矩阵分解的基本方法,为后继的学习和提高奠定数学基础。

    章节第一讲:正定矩阵 第二讲:相似矩阵 第三讲:奇异值分解 第四讲:线性变换 I 第五讲:线性变换 II 第六讲:伪逆 第七讲:工程中的矩阵 第八讲:图与网络 第九讲:Markov矩阵和正矩阵 第十讲:Fourier级数 第十一讲:计算机图像 第十二讲:复数与复矩阵 结课寄语

  • 数学实验

    自主模式 国家级精品 数学学科
    龚劬
    • 龚劬教授 重庆大学数学与统计学院
    • $可随时加入
    • g1.9万人
    • 7课件全部开放

    简介           洗衣机要洗涤几轮,衣服才能洗干净?既要瘦身,又要身体健康,膳食如何搭配?买手机选择分期付款还是一次性付款?出行时搭公交还是坐地铁?……这些与我们的生活密切相关的问题都可以用数学实验加以解决。该课程将引导你学习和应用功能强大的科学计算软件MATLAB和插值、拟合、微分方程、数学规划、图论等数学建模知识,提高学习者运用数学知识同时借助于软件工具分析和解决实际问题的能力,培养创新意识和创新能力。

    章节第1章 MATLAB软件入门 第2章 数学建模初步 第3章 方程与方程组 第4章 微分方程 第5章 数学规划 第6章 插值方法 第7章 数据拟合 第8章 线性回归 第9章 图论算法 拓展资源 2017年春季学期期末论文试卷

  • 小波与科学(自主模式)

    自主模式 数学学科
    冉启文
    • 冉启文教授 哈尔滨工业大学航天学院
    • $可随时加入
    • g1.8万人
    • 7课件全部开放

    简介小波是二十世纪八十年代才产生之后得到迅速发展并日趋完善的新颖科学思想和方法,它是当代主流科学研究领域众多科学家和工程师交相辉映、穷尽卓越智慧为人类思想和认识方法宝库无私奉献、鸿篇巨制的科学交响篇章。小波方法在观测域和变换域同时具备局部化能力,它的广泛应用已经推动包括数学、物理学、计算机科学、光学、声学、生物学和医学、信息科学、控制科学、视觉科学、量子理论、天体物理学、管理学、精密机械学和航空航天科学等在内的当代科学技术主要前沿领域的科学观念和思想、认识论和计算方法进入一个崭新时代,取得累累硕果并实现了大规模的创新,小波理论也因此享有了“数学显微镜”的美誉。 MOOC小波-《小波与科学》课程面向理学、工学、管理学、医学等各学科大学二年级及以上各年级具有线性代数和微积分学习经历的大学生、研究生和科研人员,计划通过48学时介绍小波方法解决当代科学技术主流前沿领域研究问题的典型成功案例,帮助学习者理解和掌握小波核心理论的科学思想和研究方法,如小波、小波多分辨分析、小波包、小波和小波包的分解/合成算法等,在小波思想基础上建立理解当代科学典型前沿问题的新思维,培养和提高学习者利用小波方法和理论解决科学技术问题的创新研究能力。 MOOC小波-《小波与科学》课程的主要内容包括小波简史、小波和小波变换的基本性质、小波多分辨分析方法、小波构造和算例、小波包理论、小波和小波包的时-频局部化、小波和小波包的分解/合成算法、图像的小波变换和小波包变换、图像的小波和小波包金字塔算法、小波应用专题:小波包与测不准原理、小波与信号滤波和图像滤波、小波应用专题:小波与图像压缩等。

    章节绪论:小波宣言 第一章 小波简史 第二章 预备知识 第三章 小波基本理论 第四章 多分辨率分析 第五章 多分辨率分析与尺度函数 第六章 多分辨率分析与小波空间 第七章 小波函数与带通滤波器 第八章 小波方程与尺度方程 第九章 正交小波充分必要条件 第十章 正交小波构造 第十一章 Shannon小波 第十二章 Daubechies小波 第十三章 小波与时频分析 第十四章 小波分解与小波合成算法 第十五章 小波包与小波包算法 第十六章 二维小波和小波包理论 第十七章 小波与科学 期末考试

  • 工科数学分析(一)(自主模式)

    自主模式 国家级精品 数学学科
    杨小远
    • 杨小远教授 北京航空航天大学数学学院
    • $可随时加入
    • g1.6万人
    • 7课件全部开放

    简介  《工科数学分析(一)》课程包括数列极限、函数极限与连续、函数导数与应用、不定积分、定积分与应用、广义积分、数项级数。课程体系由浅入深,符合学生认知规律。每一章都有提高课,为学生初步打开现代数学的窗口,开阔学生视野。同时每一章都设置了系列探索类问题,包括理论问题、应用问题,培养学生研究解决问题的能力。    《工科数学分析》课程从2005年在北航开设,目前每年全校有近2500名学生主修此门课程,是学校核心基础课,北京市精品课。     考核机制:在完整学习课程视频的基础上,章节测试成绩即为总成绩,总分60即为通过。

    章节第一章 数列极限 第二章 函数极限与连续 第三章 函数导数与应用 第四章 泰勒公式 第五章 不定积分 第六章 定积分 第七章 定积分的应用 第八章 无穷积分 第九章 数项级数 章节